
CVISN Guide to Phase Planning & Tracking Incremental Development

2. INCREMENTAL DEVELOPMENT (SPIRAL PROCESS
MODEL)

“All things are a combination of earth, fire, water, and software.”
-Adapted from Empedocles, 495-435BC

As explained in the CVISN Guide to Program and Project Planning [4], software is different and
therefore its development must be managed differently. In the engineering profession this has
led to a new incremental product development process model known as the “spiral”.

2.1 What is a Development Model?

A product development process model is a mental picture – a conceptual framework that serves
as an organizing principle for interrelated activities. The notion of the spiral model as a
fundamental principle underlying CVISN phase planning and tracking is so vitally important that
we devote a chapter to it.

2.2 Linear Development Model Doesn’t Work for Software

The linear model (or “waterfall” model because of its shape when drawn) of product
development (see Figure 2–1) worked well for centuries, but fails for today’s software-intensive,
behaviorally complex systems [10, 11]. Some problems with the linear model are:

• Users don’t know precisely what they need from an automated system until they begin to
see it in operation, so up-front requirements cannot be adequate.

• There is no opportunity for design re-direction based upon user experience.
• Technology evolves rapidly, thereby making earlier choices less effective or even

obsolete.
• The time frame (typically 3 years) is too long from concept to operation, and

consequently stakeholder commitment evaporates.
• There is a high risk of never having anything operational.

The Johns Hopkins University Applied Physics Laboratory Baseline V1.0 Page 2–1

CVISN Guide to Phase Planning & Tracking Incremental Development

Don’t Use Linear Development Model

TEST

BUILD

DESIGN

PRODUCT
RELEASE

START

PROJECT
PLAN

Figure 2-1. Linear Development Model is Inadequate

for Software-Intensive Products

2.3 Spiral Development Model Works Well

The essence of the spiral model is first to establish a baseline plan and an overall vision of the
architecture; and then to deploy the product incrementally by successive iterations through
design, build, test, and next-phase planning.

The spiral development model deals with the shortcomings of the linear development model:

• Users react when they see the system in operation.
• Each turn of the spiral (or phase) is an opportunity for design re-direction based upon

user experience.
• Time frame of each turn of the spiral is typically 3-6 months, and therefore stakeholder

commitment is nourished by constant progress.
• Each phase is an opportunity to absorb new technology.
• After each turn of the spiral at least that much is operational.

Here’s an analogy: suppose your organization began awarding annual bonuses of $15,000 and
your family decided to dedicate it each year for ten years to turning your existing house into your
dream house. Where do you begin?

The Johns Hopkins University Applied Physics Laboratory Baseline V1.0 Page 2–2

CVISN Guide to Phase Planning & Tracking Incremental Development

The analogy commences in Phase 1 (Figure 2–2) by means of consultations with the architect
who prepares a complete site plan. Do you then simultaneously start digging a pool, paneling
the family room, and penetrating the exterior wall for a fireplace? NO! What would happen if
next year you had to move, or if the bonuses dry up? You’d end up with a big hole in the yard, a
half-paneled family room, and a piece of plywood on the exterior wall. Instead you would fully
complete one portion of the vision as your first deliverable product for Phase 1 – say the
fireplace.

Spiral Development Model Phase 1

PRODUCT
RELEASES

START

PROJECT
PLAN &

PHASE 1
PLAN

Vision for
overall

deployment

DESIGN

TEST

BUILD

Figure 2-2. First Iteration Through the Spiral Model

For an illustrative CVISN project: at the end of Phase 1 your state architecture has been firmly
established, and the essential elements of the computing and networking infrastructure have been
procured. You might have hardware (such as servers) but no redundancy yet (such as hot-spare
servers); operating systems (such as Windows or Unix); a database management system (such as
Oracle or Sybase); network protocols (such as TCP/IP or SNA); and interface standards (such as
EDI or XML).

The Johns Hopkins University Applied Physics Laboratory Baseline V1.0 Page 2–3

CVISN Guide to Phase Planning & Tracking Incremental Development

Continuing the dream house analogy: in the second year (Figure 2–3) you are fortunate to
receive another bonus. The family’s priorities have changed, and now they want the basketball
court sooner than the swimming pool. The architect updates the site plan per new safety
regulations that now require a fence, and a contractor paves the basketball court. Good thing for
you the hole for the pool wasn’t already dug, because then there wouldn’t have been space for
the required fencing.

Spiral Development Model Phase 2

PRODUCT
RELEASES

PHASE
PLAN

DESIGN

TEST

BUILD

PROJECT
PLAN &
PHASE 1

PLAN

Figure 2-3. Second Iteration Through the Spiral Model

In the illustrative CVISN project: at this point perhaps a prototype user’s Carrier Automated
Transaction (CAT) software package, along with a prototype state Credentialing Interface (CI)
server, would be functional in a laboratory setting – running a few basic user-oriented threads
such as the capability to submit an International Registration Plan (IRP) supplemental
application but without connection to the IRP processing center.

The Johns Hopkins University Applied Physics Laboratory Baseline V1.0 Page 2–4

CVISN Guide to Phase Planning & Tracking Incremental Development

Continuing with the dream house analogy (Figure 2–4): bad news, bad year – bonuses are much
smaller for everyone. You alter the priorities within the constraints, and decide the attic steps go
in this year, hopefully the pool next year. Happily the fireplace and basketball court are fully
functional.

Spiral Development Model Phase 3

PRODUCT
RELEASES

PROJECT
PLAN &

PHASE 1
PLAN PHASE

PLAN

DESIGN

TEST

BUILD

Figure 2-4. Third Iteration Through the Spiral Model

In the illustrative CVISN project: at this point, for example, the CAT hardware would be
deployed to a user’s site; and the CI hardware deployed in the state’s server room with full
physical security, firewall, and an uninterruptible power supply. However, there is not yet
redundant hardware. Transaction functionality would be demonstrable without embarrassment
(such as an end-to-end IRP supplemental application, but perhaps without actually printing the
final cab card).

The Johns Hopkins University Applied Physics Laboratory Baseline V1.0 Page 2–5

CVISN Guide to Phase Planning & Tracking Incremental Development

Wrapping up the dream house analogy (Figure 2–5): good news this year, bonuses are higher
than ever –but this will be their last year. You complete the pool and fencing, abandon the
bowling alley.

Spiral Development Model Phase 4

PRODUCT
RELEASES

PROJECT
PLAN &

PHASE 1
PLAN

PHASE
PLAN

DESIGN

TEST

BUILD

Figure 2-5. Final Iteration Through the Spiral Model

In the illustrative CVISN project: all hardware and infrastructure would be in place, such as a
multi-year contract for AAMVAnet and complete redundancy for mission-critical hardware.
Complete end-to-end functionality could be demonstrated now, including printing a credential
and receiving electronic payment. Perhaps the number of credentials types is still limited, yet
the transactions would be end-to-end and useful.

The key point is that after every turn of the spiral there is demonstrable functionality.

In the above approach to development the system is deployed incrementally by successive
iterations through design, build (creation), test, and next-phase planning. Detailed requirements
analysis and design occur in each phase. This carries the risk that some “hard” requirement is
identified at the detailed level that cannot be accommodated by the baseline top-level design.
The program-level Configuration Control Board should address such problems. The advantage
of the spiral approach is that some capability is available at the end of each phase, and end-users
see what the developers are going to provide. That early end-user evaluation allows their
feedback to influence future phases. Also, in each phase the designers have an opportunity to
take advantage of new technologies.

The Johns Hopkins University Applied Physics Laboratory Baseline V1.0 Page 2–6

CVISN Guide to Phase Planning & Tracking Incremental Development

2.4 What is a Software “Build”?

In the software development world “build” is not only a verb but also a noun used to describe a
software entity. The IEEE Standard Glossary of Software Engineering Terminology [23] defines
a “build” as an operational version of a system or component that incorporates a specified
subset of the capabilities that the final product will provide.

The notion of builds is useful for phased development and deployment, but usage requires
rigorous record-keeping in order to know exactly what is “out there”. In the sections below we
consider a “build” as an integration of particular versions of products into a working system.

2.5 Configuration Management During Phases and Builds

Figure 2–6 shows the relationships among program phases, project builds, and product versions.
Each program phase is associated with a set of defined operational builds within each project.
Each project’s build is a set of specific versions of products (“releases”) that have been
integrated and tested together, to provide specified capabilities for that project. Every product
release has a version number and an associated description. All of the preceding are under
configuration management.

Safety

Phase 2 Phase 3

Build 1 Build 2 Build 3

Product A Version a.a.a

Product B Version b.b.b

Credentials

Screening

Product ... Version ...

Product Z Version z.z.z

Build 1 Build 2
Build 3

Build 1
Build 2

Build 3

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4

Phase 4 Phase 5 Phase
...

State CVISN
Program Plan

Build 4

Build 4

Build 4

Build 5 Build 6

Each “build” is a bundling of
designated versions of products
which have been integrated and
tested together, to provide
specified capabilities in a
functional area.

Example of Credentials Area Build 3 Example of Program Phase 5

Each program phase consists of a
specific completed build in each area.
For example, Phase 5 is:

Safety Build 3
Credentials Build 5
Screening Build 4

Months

(Screening Level 1
Finished)

(Continuing)

Fu
nc

tio
na

l A
re

as

Phases & Builds

Figure 2-6. Relationships Among Phases, Builds, and Product Versions

The Johns Hopkins University Applied Physics Laboratory Baseline V1.0 Page 2–7

CVISN Guide to Phase Planning & Tracking Incremental Development

A rigorous configuration management process notifies all concerned parties how to handle
change requests and approvals, and how to control hardware modifications and software
versions. Configuration management is a discipline applying technical and administrative
direction and surveillance to identify and document characteristics of every item designated to be
under configuration control.

As you make incremental deliveries of products, you need to be able to identify all the
components in each delivery, and keep track of problems detected in one phase so that you can
control how and when proposed resolutions are implemented.

Figure 2–7 shows how individual products might be identified. Releasing a product version
usually means making it available to users for testing or operations. Keeping track of versions of
different products makes it possible to identify what components are used to achieve each build’s
capabilities within a project (Safety Project is shown in this example.) Be sure to establish some
naming convention for versions that everyone understands and can apply consistently.

CVIEW Version 1 . 6 . 2

1 2 3 4 5 6 7 8 9 10 11 12 1 2

Major Capability: e.g., Carrier, Vehicle & Driver Snapshots
Minor Capability: e.g., Vehicle Subscriptions supported

Small incremental improvements or bug fixes

Example of
Version Numbering

Months

Version: A particular configuration of a product (e.g., CVIEW). Each version supports a specific set
of capabilities, and is uniquely identified by a version number (e.g. V1.6.2).

Delivery: A version provided to a customer.
Release: Synonymous with version.

Safety
Project

Build 1
Build 2 (Continuing)

Develop Test MaintainVersion 1.0.x

Develop Test MaintainVersion 1.1.x

Develope.
g.

, C
VI

EW

Version 2.0.x (Continuing)

CVIEW V1.0.3 V1.0.6

Build 3 CVIEW V1.1.2

Notes: Development is usually scheduled at the 2 digit (e.g., 1.2) version level. The third digit is
used to denote small incremental improvements or bug fixes. Not all versions are necessarily
delivered to a customer.

Product Versions

Figure 2-7. Version Identification is Part of Configuration Management

The IEEE Standard Glossary of Software Engineering Terminology [23] defines “version” as a
release of a computer software configuration item – meaning that the version number
uniquely identifies a configuration-controlled software entity and distinguishes it from similar
versions released earlier or later than the one you hold in your hand. This matters when you
need to know exactly what the software is supposed to do or when you are calling the
manufacturer for help. Figure 2–7 is consistent with that published standard; however you are
likely to encounter different usages by various vendors and within other organizations.

The Johns Hopkins University Applied Physics Laboratory Baseline V1.0 Page 2–8

CVISN Guide to Phase Planning & Tracking Incremental Development

By their nature these terms are used recursively: one person’s system (top-level deliverable) is
another person’s component (minor element of a larger deliverable system). There can be builds
of versions of builds of versions. Although it may seem potentially confusing, it is easily
resolved if you explicitly point out the level in the product hierarchy you are referring to.

The Johns Hopkins University Applied Physics Laboratory Baseline V1.0 Page 2–9

CVISN Guide to Phase Planning & Tracking Incremental Development

This Page Intentionally Blank

The Johns Hopkins University Applied Physics Laboratory Baseline V1.0 Page 2–10

